Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Experimental & Molecular Medicine ; : e27-2013.
Article in English | WPRIM | ID: wpr-119450

ABSTRACT

Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (beta-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.


Subject(s)
Animals , Humans , Mice , Activating Transcription Factor 2/metabolism , Cell Separation , Chemokines/biosynthesis , Chemotaxis/drug effects , Culture Media, Conditioned/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , GTP-Binding Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , NF-kappa B/metabolism , Neutrophils/cytology , Pertussis Toxin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Wnt/metabolism , Type C Phospholipases/metabolism , Wnt Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Indian J Med Microbiol ; 2011 Apr-June; 29(2): 165-168
Article in English | IMSEAR | ID: sea-143802

ABSTRACT

The present study was conducted to correlate the biotypes of Gardnerella vaginalis strains isolated from cases of bacterial vaginosis and their virulence factors. Thirty-two strains of G. vaginalis isolated from cases of bacterial vaginosis were biotyped. Adherence to vaginal epithelial cells, biofilm production, surface hydrophobicity, phospholipase C and protease activity were tested on these isolates. Biotype 1 was the most prevalent (8; 25%), followed by biotype 2 (7; 21.9%) and biotypes 5 and 8 (5; 15.6%). We did not find any statistical correlation between G. vaginalis biotypes and its virulence factors. Virulence factors expressed by G. vaginalis were not associated with a single biotype.


Subject(s)
Adult , Bacterial Adhesion , Bacterial Typing Techniques , Biofilms/growth & development , Epithelial Cells/microbiology , Female , Gardnerella vaginalis/chemistry , Gardnerella vaginalis/classification , Gardnerella vaginalis/isolation & purification , Gardnerella vaginalis/pathogenicity , Humans , Hydrophobic and Hydrophilic Interactions , Peptide Hydrolases/metabolism , Type C Phospholipases/metabolism , Vaginosis, Bacterial/microbiology , Virulence Factors/genetics
3.
J Biosci ; 2008 Jun; 33(2): 221-30
Article in English | IMSEAR | ID: sea-111148

ABSTRACT

Mycobacterium tuberculosis survives and persists for prolonged periods within its host in an asymptomatic,latent state and can reactivate years later if the host's immune system weakens. The dormant bacilli synthesize and accumulate triacylglycerol, reputed to be an energy source during latency. Among the phospholipases, phospholipase C plays an important role in the pathogenesis. Mutations in a known phospholipase C, plcC, of M.tuberculosis attenuate its growth during the late phase of infection in mice. Hydrolysis of phospholipids by phospholipase C generates diacylglycerol, a well-known signalling molecule that participates in the activation of extracellular signal-regulated kinases (ERK) through protein kinase C leading to macrophage activation. In the present study, we show that M.tuberculosis possesses an additional cell wall-associated protein, Rv3487c, with phospholipase C activity. The recombinant Rv3487c hydrolyses the substrate phosphatidylcholine and generates diacylglycerol by removing the phosphocholine. Furthermore, Rv3487c is expressed during infection as it exhibits significant humoral immunoreactivity with sera from children with tuberculosis, but not with that from adult patients.


Subject(s)
B-Lymphocytes/immunology , Bacterial Proteins/metabolism , Base Sequence , Cell Wall/enzymology , Chromatography, Thin Layer , Cloning, Molecular , DNA Primers , Enzyme-Linked Immunosorbent Assay , Mycobacterium tuberculosis/enzymology , Type C Phospholipases/metabolism
4.
Braz. j. med. biol. res ; 38(8): 1203-1208, Aug. 2005. ilus
Article in English | LILACS | ID: lil-405521

ABSTRACT

Many cellular proteins are bound to the surfaces of membranes and participate in various cell signaling responses. Interactions between this group of proteins are in part controlled by the membrane surface to which the proteins are bound. This review focuses on the effects of pressure on membrane-associated proteins. Initially, the effect of pressure on membrane surfaces and how pressure may perturb the membrane binding of proteins is discussed. Next, the effect of pressure on the activity and lateral association of proteins is considered. We then discuss how pressure can be used to gain insight into these types of proteins.


Subject(s)
Humans , Hydrostatic Pressure , Membrane Proteins/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Phospholipase C delta , Protein Binding , Static Electricity , Type C Phospholipases/chemistry , Type C Phospholipases/metabolism
5.
Biol. Res ; 37(4): 641-645, 2004. ilus, graf
Article in English | LILACS | ID: lil-437520

ABSTRACT

A capacitative Ca2+ entry (CCE) pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC). However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO) synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE) pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.


Subject(s)
Animals , Calcium/metabolism , Calcium Channels/metabolism , Type C Phospholipases/metabolism , Muscle, Smooth, Vascular/metabolism , Calcium Signaling/physiology , Vasopressins/metabolism , Cell Line , Cyclic GMP/metabolism , Nitric Oxide/biosynthesis
6.
Journal of Korean Medical Science ; : 704-707, 2002.
Article in English | WPRIM | ID: wpr-72654

ABSTRACT

We report two cases of gingival plasma cell granuloma in a 34-yr-old and 40-yr-old two male renal transplant recipients with cyclosporine A (CsA)-induced gingival overgrowth (GO). Histologically, these lesions were composed of mature plasma cells, showing polyclonality for both lambda and kappa light chains and fibrovascular connective tissue stroma. In addition to the fact that CsA-induced plasma cell granuloma is rare, the salient features of our cases were the secretion of interleukin-6 and overexpression of phospholipase C-gamma1 of the tumor cells, which may explain the mechanisms of CsA- induced GO.


Subject(s)
Female , Humans , Male , Middle Aged , Cyclosporine/adverse effects , Gingival Diseases/chemically induced , Granuloma, Plasma Cell/chemically induced , Immunohistochemistry , Immunosuppressive Agents/adverse effects , Interleukin-6/metabolism , Kidney Transplantation , Phospholipase C gamma , Type C Phospholipases/metabolism
7.
Experimental & Molecular Medicine ; : 257-262, 2001.
Article in English | WPRIM | ID: wpr-144638

ABSTRACT

His-Phe-Tyr-Leu-Pro-Met (HFYLPM) is a synthetic peptide that stimulates Jurkat T cells resulting in intracellular calcium ([Ca2+]i) increase in a pertussis toxin (PTX)-sensitive manner. We have examined the physiological role of the peptide in T cell activity by comparative investigation of intracellular signaling pathways accompanied with HFYLPM-induced T cell chemotaxis with a well-known chemokine, stromal cell-derived factor-1 (SDF-1)-induced signalings. Wortmannin and genistein inhibited both of HFYLPM- and SDF-1-induced Jurkat T cell chemotaxis indicating that phosphoinositide-3-kinase and tyrosine kinase activity were required for the processes. However, U-73122 and BAPTA/AM preferentially blocked HFYLPM- but not SDF-1-induced T cell chemotaxis. It indicates that phospholipase C/calcium signaling is necessary for only chemotaxis by HFYLPM. One of the well-known cellular molecules involving chemotaxis, extracellular signal-regulated protein kinase (ERK), was activated by SDF-1 but not by HFYLPM ruling out a possible role of ERK on the peptide-mediated chemotaxis. These results indicate that the synthetic peptide, HFYLPM, stimulates T cell chemotaxis showing unique signaling and provide a useful tool for the study of T cell activation mechanism.


Subject(s)
Humans , Phosphatidylinositol 3-Kinase/metabolism , Androstadienes/pharmacology , Calcium/metabolism , Cell Line , Chemokines, CXC/pharmacology , Chemotaxis, Leukocyte/drug effects , Dose-Response Relationship, Drug , Genistein/pharmacology , Jurkat Cells , Oligopeptides , Peptide Fragments/chemical synthesis , Pertussis Toxin , Type C Phospholipases/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , T-Lymphocytes/drug effects , Virulence Factors, Bordetella/pharmacology
8.
Experimental & Molecular Medicine ; : 257-262, 2001.
Article in English | WPRIM | ID: wpr-144626

ABSTRACT

His-Phe-Tyr-Leu-Pro-Met (HFYLPM) is a synthetic peptide that stimulates Jurkat T cells resulting in intracellular calcium ([Ca2+]i) increase in a pertussis toxin (PTX)-sensitive manner. We have examined the physiological role of the peptide in T cell activity by comparative investigation of intracellular signaling pathways accompanied with HFYLPM-induced T cell chemotaxis with a well-known chemokine, stromal cell-derived factor-1 (SDF-1)-induced signalings. Wortmannin and genistein inhibited both of HFYLPM- and SDF-1-induced Jurkat T cell chemotaxis indicating that phosphoinositide-3-kinase and tyrosine kinase activity were required for the processes. However, U-73122 and BAPTA/AM preferentially blocked HFYLPM- but not SDF-1-induced T cell chemotaxis. It indicates that phospholipase C/calcium signaling is necessary for only chemotaxis by HFYLPM. One of the well-known cellular molecules involving chemotaxis, extracellular signal-regulated protein kinase (ERK), was activated by SDF-1 but not by HFYLPM ruling out a possible role of ERK on the peptide-mediated chemotaxis. These results indicate that the synthetic peptide, HFYLPM, stimulates T cell chemotaxis showing unique signaling and provide a useful tool for the study of T cell activation mechanism.


Subject(s)
Humans , Phosphatidylinositol 3-Kinase/metabolism , Androstadienes/pharmacology , Calcium/metabolism , Cell Line , Chemokines, CXC/pharmacology , Chemotaxis, Leukocyte/drug effects , Dose-Response Relationship, Drug , Genistein/pharmacology , Jurkat Cells , Oligopeptides , Peptide Fragments/chemical synthesis , Pertussis Toxin , Type C Phospholipases/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , T-Lymphocytes/drug effects , Virulence Factors, Bordetella/pharmacology
9.
Braz. j. med. biol. res ; 33(3): 269-78, Mar. 2000. ilus, graf
Article in English | LILACS | ID: lil-255045

ABSTRACT

Penetration of Trypanosoma cruzi into mammalian cells depends on the activation of the parasite's protein tyrosine kinase and on the increase in cytosolic Ca2+ concentration. We used metacyclic trypomastigotes, the T. cruzi developmental forms that initiate infection in mammalian hosts, to investigate the association of these two events and to identify the various components of the parasite signal transduction pathway involved in host cell invasion. We have found that i) both the protein tyrosine kinase activation, as measured by phosphorylation of a 175-kDa protein (p175), and Ca2+ mobilization were induced in the metacyclic forms by the HeLa cell extract but not by the extract of T. cruzi-resistant K562 cells; ii) treatment of parasites with the tyrosine kinase inhibitor genistein blocked both p175 phosphorylation and the increase in cytosolic Ca2+ concentration; iii) the recombinant protein J18, which contains the full-length sequence of gp82, a metacyclic stage surface glycoprotein involved in target cell invasion, interfered with tyrosine kinase and Ca2+ responses, whereas the monoclonal antibody 3F6 directed at gp82 induced parasite p175 phosphorylation and Ca2+ mobilization; iv) treatment of metacyclic forms with phospholipase C inhibitor U73122 blocked Ca2+ signaling and impaired the ability of the parasites to enter HeLa cells, and v) drugs such as heparin, a competitive IP3-receptor blocker, caffeine, which affects Ca2+ release from IP3-sensitive stores, in addition to thapsigargin, which depletes intracellular Ca2+ compartments and lithium ion, reduced the parasite infectivity. Taken together, these data suggest that protein tyrosine kinase, phospholipase C and IP3 are involved in the signaling cascade that is initiated on the parasite cell surface by gp82 and leads to Ca2+ mobilization required for target cell invasion.


Subject(s)
Humans , Animals , Mice , Neoplasm Invasiveness , Signal Transduction , Trypanosoma cruzi/physiology , Calcium/analysis , Calcium/metabolism , Enzyme Activation , HeLa Cells , K562 Cells , Mammals/parasitology , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Trypanosoma cruzi/drug effects , Type C Phospholipases/metabolism
10.
Experimental & Molecular Medicine ; : 101-109, 2000.
Article in English | WPRIM | ID: wpr-105756

ABSTRACT

Phospholipase C (PLC)1 hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces a transient increase in intracellular free Ca2+, while DAG directly activates protein kinase C. Upon stimulation of cells with growth factors, PLC-gamma1 is activated upon their association with and phosphorylation by receptor and non-receptor tyrosine kinases. In this review, we will focus on the activation mechanism and regulatory function of PLC-gamma1.


Subject(s)
Cell Division , Enzyme Activation , Isoenzymes/metabolism , Type C Phospholipases/metabolism , Second Messenger Systems , T-Lymphocytes
11.
Experimental & Molecular Medicine ; : 42-46, 1999.
Article in English | WPRIM | ID: wpr-186198

ABSTRACT

Our previous studies have shown that subthreshold concentrations of two platelet agonists exert synergistic effects on platelet aggregation. Here we studied the mechanism of synergistic interaction of 5-hydroxytryptamine (5-HT) and epinephrine mediated platelet aggregation. We show that 5-HT had no or little effect on aggregation but it did potentiate the aggregation response of epinephrine. The synergistic interaction of 5-HT (1-5 microM) and epinephrine (0.5-2 microM) was inhibited by alpha2-adrenoceptor blocker (yohimbine; IC50= 0.4 microM), calcium channel blockers (verapamil and diltiazem with IC50 of 10 and 48 mM, respectively), PLC inhibitor (U73122; IC50=6 microM) and nitric oxide (NO) donor, SNAP (IC50=1.6 microM)). The data suggest that synergistic effects of platelet agonists are receptor-mediated and occur through multiple signalling pathways including the activation PLC/Ca2+ signalling cascades.


Subject(s)
Humans , Blotting, Western , Calcium Channel Blockers/pharmacology , Calcium Signaling , Drug Synergism , Enzyme Activation , Enzyme Inhibitors/pharmacology , Epinephrine/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Proteins/metabolism , Type C Phospholipases/metabolism , Type C Phospholipases/antagonists & inhibitors , Platelet Aggregation/physiology , Platelet Aggregation/drug effects , Serotonin/pharmacology , Signal Transduction
12.
Southeast Asian J Trop Med Public Health ; 1996 Sep; 27(3): 584-91
Article in English | IMSEAR | ID: sea-33321

ABSTRACT

The cells of Burkholderia pseudomallei, B. cepacia and Pseudomonas aeruginosa grown on agar plates were stained with fluorescently-labeled insulin. The former two species were stained positively indicating insulin binding but P. aeruginosa was not. Insulin exposure reduced phospholipase C and acid phosphatase activities of B. pseudomallei but did not affect those enzymatic activities of B. cepacia in the employed experimental conditions. It is suggested that B. pseudomallei have insulin receptors which may be associated with a signal transfer system involving phospholipase and protein tyrosine phosphatase.


Subject(s)
Acid Phosphatase/metabolism , Burkholderia Infections/complications , Burkholderia cepacia/enzymology , Burkholderia pseudomallei/enzymology , Diabetes Complications , Diabetes Mellitus/microbiology , Humans , Hydrogen-Ion Concentration , Insulin/pharmacology , Type C Phospholipases/metabolism
13.
Braz. j. med. biol. res ; 27(2): 363-7, Feb. 1994.
Article in English | LILACS | ID: lil-140276

ABSTRACT

Three enzymes have been described in malaria merozoites: a serine-protease and two phospholipases. The parasite serine-protease is necessary for parasite entry into the red blood cell. This enzyme is synthesized by intraerythrocytic schizonts as a glycolipid-anchored membrane precursor, harbouring a performed serine-protease active site but not detectable proteolytic activity. Detection of the enzymatic activity correlates with the solubilisation of the enzyme by a parasite glycolipid-specific phospholipase C in merozoites. A third enzyme has been detected with glycolipid-degrading activity, presumably a lipase A. These activities participate in a biochemical cascade originating with the attachment of the merozoite to the red blood cell, including the translocation of the phospholipase C to the membrane-bound protease, the solubilisation/activation of the protease and its secretion at the erytrocyte/parasite junction and ending with the entry of the parasite into the host cell. Both the phospholipase C and the lipase A might generate secondary messages in the merozoite. Our current knowledge concerning these enzymes is presented


Subject(s)
Erythrocytes , Lipase/metabolism , Malaria/enzymology , Serine Proteases/metabolism , Type C Phospholipases/metabolism , DNA , Fatty Acids , Phosphatidylinositols/metabolism , Glycolipids/metabolism , Microscopy, Electron , Plasmodium falciparum
14.
Biol. Res ; 26(1/2): 285-312, 1993. ilus, tab
Article in English | LILACS | ID: lil-228612

ABSTRACT

The presence of GPI anchors and phospholipases capable of solubilizing them in Trypanosoma cruzi has been investigated in epimastigotes, metacyclic trypomastigotes from axenic cultures and tissue culture trypomastigotes. The GPI anchored proteins in epimastigote forms are scarce when compared to their abundance in the parasite forms which can infect mammals, and GPI-solubilizing phospholipases C have been found in all life cycles stages. In epimastigote and metacyclic forms, the activity is found in the soluble fraction upon cell lysis, whereas in tissue cultured trypomastigotes it is membrane bound and, being mostly sensitive to p-chloromercuriphenylsulfonate, resembles closely the GPI specific phospholipase of Trypanosoma brucei. Sequential immunoprecipitations with monoclonal antibodies and anti-CRD indicated the presence of several sub-populations among the surface proteins of metacyclic trypomastigotes, five of these belonging to the GPI-anchored 90 kD family. Among this family, the epitopes recognized by MAb-1G7 are present in three members, one of them also expressing the 3F6 epitope. There are 2 members recognized only by MAb-3F6 but not by MAb-1G7, one of them being probably galactosylated on the GPI since it can be immunoprecipitated by anti-CRD. Very strangely, the epitope recognized by the MAb-WIC29.26 was always present on the gp72, as originally described, but under certain circumstances appeared cryptic on one of the 90 kD species. During epimastigote transformation into metacyclic trypomastigotes in vitro, the ability of the GPI of the 1G7-antigen to be solubilized by phospholipase C and D varies depending on the age of the culture and presence or absence of fetal calf serum. Different patterns of solubilization were also obtained for 1G7-Ag, depending on whether the test is performed with parasite lysates or with antigen affinity purified from them. Our data indicate that the phospholipase C resistance observed does not arise from acylation on the inositol, as previously described for acetylcholinesterase from human erythrocytes, being rather due to factors which either modify the GPI or affect the action of the phospholipases...


Subject(s)
Animals , Humans , Glycosylphosphatidylinositols/metabolism , Phospholipases/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Antibodies, Monoclonal , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Hydrolysis , Precipitin Tests/methods , Solubility , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/immunology , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL